Принцип работы аппарата МРТ

Один из самых эффективных методов медицинского исследования – МРТ или магнитно-резонансная томография, позволяющая получить максимально точные сведения об анатомических особенностях организма пациента, обменных процессах, физиологии тканей и внутренних органов. С его появлением стало возможно детальное обследование головного мозга для диагностики заболеваний и дегенеративных поражений. Возможность определения локализации процесса и объема произошедших повреждений становится основным преимуществом данной процедуры при выявлении новообразований и исследовании сосудов.

Что такое МРТ

Магнитно-резонансная томография – это уникальная возможность получения высокоточных послойных изображений исследуемой области. Процедура проводится при помощи специального аппарат, действие которого на организм человека заключается в стимуляции радиоволн, создании сильного магнитного поля и регистрации ответного электромагнитного излучения организма. Результатом процесса становится построение изображения путем обработки поступающего сигнала на компьютере.

Что такое магнитно-резонансный томограф? Это устройство, позволяющее добиться эффективной диагностики, выявить изменения в работе организма и произвести высокоточную визуализацию исследуемых органов, которая значительно превосходит результаты других методик (рентгена, КТ, ультразвука). Такая процедура позволяет выявить онкологию и ряд других заболеваний и опасных патологий, измерить скорость кровотока и движения спинномозговой жидкости и т.д.


В основе работы аппарата лежит принцип ЯМР с последующей обработкой полученных сведений специальными программами. МРТ установка обеспечивает создание сильного магнитного поля. Немаловажным фактором, объясняющим принцип работы устройства, является наличие в человеческом организме протонов (в химическом смысле это ядро атома водорода) . Магнитно-резонансный томограф позволяет поддерживать стабильное состояние магнетизма в теле пациента, при помещении его в силовое поле. Аппарат производит:

  • стимуляцию организма при помощи радиоволн, способствуя смене стационарной ориентации заряженных частиц;

  • остановку радиоволн и регистрацию электромагнитных излучений организма;

  • обработку полученного сигнала и преобразование его в изображение.

Полученная картинка не является фотографическим снимком обследуемого отдела или органа. Специалист получает высококачественное детализированное отображение радиосигналов, испускаемых телом пациента. МРТ диагностика полностью превосходит метод компьютерной томографии, поскольку в данном случае при проведении процедуры не применяется ионизирующее излучение, а используются безопасные для человеческого организма электромагнитные волны.

История создания и принцип работы МРТ 

Годом создания данного метода считается 1973, а одним из отцов-основателей магнитно-резонансной томографии – Пол Лотербур. В одном из журналов им была опубликована статья, в которой подробно описывался феномен визуализации структур и органов при помощи использования магнитных и радиоволн.

Это не единственный ученый, причастный к открытию МРТ – еще в 1946 году Феликс Блох и Ричард Пурселл, работающие в Гарварде, изучали физическое явление, в основе которого лежали свойства, присущие атомным ядрам (первичное поглощение получаемой энергии и последующее ее переизлучение. т.е. выделение с переходом к начальному состоянию). За это исследование ученые получили Нобелевскую премию (1952).

Открытие Блоха и Пурселла стало своеобразным толчком к развитию теории по ЯМР. Необычное явление изучалось как химиками, так и физиками. Демонстрация первого компьютерного томографа, включающая в себя ряд испытаний, произошла в 1972 году. Результатом проведенного исследования стало обнаружение принципиально нового способа диагностики, позволяющего детально визуализировать важнейшие структуры организма.

Далее Лотербуром был частично сформулирован принцип работы аппарата МРТ – работа ученого легла в основу исследований, проводимых до наших дней. В частности, в статье содержались следующие утверждения:

  • Трехмерные проекции объектов получаются по спектрам ЯМР протонов воды из обследуемых структур, органов и т.д.

  • Особое внимание уделялось наблюдению за злокачественными новообразованиями. Опыты, проведенные Лотербуром, показали: они существенно отличаются от здоровых клеток. Разница заключается в характеристиках полученного сигнала.

В 70-е годы XX века началась новая эра развития МРТ-диагностики. В это время Ричардом Эрнстом было предложено проведение магнитно-резонансной томографии с использованием особого метода – кодирования (как частотного, так и фазового). Именно этим способом визуализации исследуемых областей и пользуются врачи в наши дни. В 1980 году был продемонстрирован снимок, на получение которого ушло около 5 минут. Уже через шесть лет длительность отображения снизилась – до пяти секунд. При этом качество картинки оставалось неизменным.

В 1988 году был усовершенствован и метод ангиографии, позволяющий отобразить кровоток пациента без дополнительного ввода в кровь препаратов, выполняющих роль контраста.

Развитие МРТ стало новой вехой в современной медицине. Эта процедура применяется в диагностике заболеваний:

  • позвоночника;

  • суставов;

  • мозга (головного и спинного);

  • гипофиза;

  • внутренних органов;

  • молочных желез и т.д.

Возможности открытого метода позволяют обнаруживать заболевания на ранних стадиях и выявлять патологии, требующие своевременного лечения или же немедленного операционного вмешательства. Томография, проведенная на современном оборудовании, дает возможность получить точное изображение органов, обследуемых структур и тканей, а также:

  • собрать необходимую информацию о циркуляции спинномозговой жидкости;

  • определять уровень активации областей коры головного мозга;

  • проследить за газообменом в тканях.


Метод МРТ выгодно отличается от других способов диагностики:

  • Он не предполагает воздействия, осуществляемого при помощи хирургических инструментов.

  • Магнитно-резонансная томография безопасна и высокоэффективна.

  • Данная процедура относительно широко доступна и востребована при исследовании наиболее сложных случаев, требующих детальной визуализации происходящих в организме изменений.

На видео ниже демонстрируются основные этапы функционирования современного томографа:

 

Принцип работы МРТ (видео)

Принцип работы магнитно-резонансного сканера (МРТ)

Как проходит процедура? Человека помещают в специальный узкий тоннель, в котором он должен находиться в горизонтальном положении. В трубе на него воздействует сильное магнитное поле прибора. Исследование длится от 15 до 20 минут.

После пациенту выдается изображение. Оно создается благодаря методу ЯМР – физическому явлению магнитно-ядерного резонанса, связанному со свойствами протонов.При помощи радиочастотного импульса в созданном устройством электромагнитном поле вырабатывается излучение, преобразующееся в сигнал. После он регистрируется и обрабатывается компьютерной программой.

Каждый обследуемый и выводимый на экран в виде изображения срез имеет свою толщину. Рассматриваемый способ отображения схож с технологией удаления всего, что располагается над слоем и под ним. При этом большую роль играют отдельные элементы объема и плоскости – части среза и структурные компоненты получаемого магнитно-резонансного снимка.


Поскольку человеческое тело на 90% состоит из воды, происходит стимуляция протонов атомов водорода. Этот метод воздействия позволяет заглянуть в организм и диагностировать серьезные заболевания без физического вмешательства.

Устройство аппарата МРТ

Рассматриваемое современное оборудование состоит из следующих частей:

  • магнит;

  • катушки;

  • прибор, генерирующий радиоимпульсы;

  • клетка Фарадея;

  • источник питания;

  • система охлаждения;

  • системы, служащие для обработки поступающих данных.

Далее мы рассмотрим работу некоторых элементов отдельно.

Магнит

Создает стабильное поле, характеризующееся однородностью и высокой напряженностью. Именно по последнему показателю оценивается мощность прибора. Напомним о том, что именно от нее зависит качество получаемого изображения и скорость проведения процедуры.

В зависимости от напряженности все аппараты разделяются на следующие группы:

  • Низкопольные – оборудование начального уровня, открытые, сила поля < 0.5 Tл.

  • Среднепольные – показатели от 0,5-1 Тл.

  • Высокопольные – отличаются высокой скоростью исследования, четким изображением даже при движении пациента во время обследования. Напряженность магнитного поля этих установок – 1-2 Тл.

  • Сверхвысокопольные – более 2 Тл. Используются для исследовательских целей.

Также выделяются следующие виды используемых магнитов:

  • Постоянные – изготавливаются из сплавов, обладающих ферромагнитными свойствами. Преимущество таких элементов – их не нужно охлаждать, поскольку они не требуют энергии для поддержания однородного поля. Среди недостатков – большой вес используемой системы, низкая напряженность. Также подобные магниты чувствительны к температурным изменениям.

  • Сверхпроводящие – катушка, изготовленная из специального сплава. Через нее могут пропускать большие токи. Результатом работы такого устройства становится создание сильного магнитного поля. Дополнением к конструкции идет система охлаждения. Минусы данного вида – повышенное потребление жидкого гелия при низких энергозатратах, большие расходы на эксплуатацию прибора, обязательное экранирование. Также велик риск выбрасывания охлаждающей жидкости из криостата при потере свойств сверхпроводимости.

  • Резистивные – электромагниты не требуют использования специальных охлаждающих систем, способны создавать относительно гомогенное поле для проведения сложных исследований. Недостаток – большой вес (примерно 5 тонн, повышается в процессе экранирования)

 

Принцип работы катушки в МРТ

Эти элементы предназначены для повышения однородности магнитного поля. Пропуская через себя ток, они корректируют характеристики, компенсируя недостаточную гомогенность. Такие детали либо размещаются непосредственно в жидком гелии, либо не требуют охлаждения.

Результатом работы градиентных катушек становится создание четкого изображения путем локализации сигнала и сохранения точного соответствия данных, полученных во время процедуры, и области, исследуемой врачом.

Большое значение имеют мощность и скорость действия деталей – от этих показателей зависит разрешающая способность прибора, уровень шума в соотношении с сигналом и быстрота действия.

Передатчик в МРТ: принцип работы элемента в системе томографа

Данный прибор формирует радиочастотные колебания и импульсы (прямоугольной и сложной формы). Подобное преобразование позволяет добиться возбуждения ядер, повлиять на контраст изображения, выводимого на снимок. Сигнал от элемента поступает на переключатель, который, в свою очередь, воздействует на катушку, генерируя РЧ магнитное поле, влияющее на спиновую систему.

Приемник

Представляет собой отличающийся высокой чувствительностью и низким уровнем шума усилитель сигнала, работа которого происходит на сверхвысоких частотах. Регистрируемый отклик претерпевает изменения – преобразование из МГц в кГц (от высоких частот к низким).

 

Запчасти для томографов

 

За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние.

За получение точного детализированного изображения отвечают и регистрирующие датчики, которые располагаются вокруг исследуемого органа пациента. Подобная процедура абсолютно безопасна: произведя излучение сообщенной энергии, протоны возвращаются в прежнее состояние. Для улучшения качества изображения и большей детализации изображения пациенту могут ввести контрастное вещество на основе гадолиния, не вызывающее побочных реакций. Специальный препарат помещается в шприц или инъектор, автоматически рассчитывающий дозировку и скорость ввода. Подача средства полностью синхронизирована с ходом сканирования.

 

Качество проведенного обследования зависит не только от напряженности магнитного поля, но и от используемой катушки, применения контрастного вещества, особенностей диагностики и опыта специалиста, проводящего томографию.

Преимущества подобной процедуры:

  • возможность получения максимально точного изображения осматриваемого органа;

  • повышение качества диагностики;
    безопасность для пациента.

Томографы отличаются по силе создаваемого ими поля и «открытости» магнита. Чем больше мощность поля, тем быстрее проходит процедура сканирования и выше качество получаемого трехмерного изображения.

Открытые аппараты МРТ имеют C-образную форму и являются оптимальным вариантом для обследования людей, страдающих выраженной клаустрофобией. Они создавались для проведения дополнительных процедур внутри магнита. Такой тип установок гораздо слабее закрытых томографов.

Обследование с применением МРТ является одним из самых эффективных и безопасных способов диагностики и наиболее информативным методом для детального исследования спинного и головного мозга, позвоночника, органов брюшной полости и малого таза.

 

Ещё статьи

отличия высокопольных от низкопольных разница между кт и мрт аппаратами
Разница между высокопольными и низкопольными магнитами Разница между КТ и МРТ

Хотите узнать больше или заказать

Укажите ваше имя, номер телефона и дополнительную информацию по желанию,
и мы свяжемся с вами и проконсультируем по всем вопросам.